Рост и размножение бактерий. Рост и размножение бактерий фазы роста бактерий Фазы роста бактерий на жидкой питательной среде

Под ростом бактериальной клетки следует понимать увеличение массы ее цитоплазмы, которое происходит в результате синтеза клеточного материала в процессе питания. Рост популяции бактерий проходит 4 стадии: 1) лаг-фаза, 2) экспоненциальная или логарифмическая фаза, 3) стационарная фаза, 4) фаза отмирания.

ЛАГ-ФАЗА (4 -5 часов) Наступает после того, как в среду внесен посевной материал. Это период адаптации бактерий к питательной среде, когда происходит дифференциальная активация экзо- и эндоферментов для последующего осуществления ферментсубстратной реакции. При стабильном содержании ДНК отмечается резкое повышение бактериального белка и РНК.

ЛАГ-ФАЗА (4 -5 часов) Длительность лаг-фазы, как правило, непродолжительное, измеряется часами и зависит от вида бактерий, кратности посева на данную среду, состояния культуры, температуры, используемой для выращивания, состава питательной среды. При отсутствии видимых проявлений роста в лаг-фазе происходит увеличение биомассы, в результате чего размер бактериальной клетки возрастает в несколько раз.

ЛАГ-ФАЗА (4 -5 часов) Достигнув определенного размера, «накопив» нужное количество белка, РНК и ДНК, активировав экзо- и эндоферменты, бактериальная клетка начинает активно делиться. Размножение бактерий происходит путем поперечного деления клетки.

ФАЗА ЛОГАРИФМИЧЕСКОГО РОСТА (5 - 6 часов) Это фаза размножения, осуществляемая посредством бинарного деления материнской клетки на две дочерние. «Цепная реакция прогрессивно ускоряющегося бинарного деления бактериальных клеток приводит к быстрому нарастанию бактериальной массы в питательной среде, интенсивному расходованию ее энергетического субстрата и накоплению продуктов бактериального метаболизма.

СТАЦИОНАРНАЯ ФАЗА РОСТА В результате среда становится все более неблагоприятной для дальнейшего роста и размножения бактерий. Во время стационарной фазы скорость размножения остается постоянной. В зависимости от вида культивируемых бактерий может длится долго, после чего наступает четвертая стадия –

ФАЗА ОТМИРАНИЯ Фаза отмирания характеризуется прогрессивным отмиранием бактериальных клеток по логарифмическому типу. Продолжительность этой фазы – от 48 часов до нескольких недель.

Характер роста бактерий на жидких питательных средах различен - диффузное помутнение питательной среды, - образование пленки или осадка (придонный рост), - рост в виде «комочка ваты» . Характер роста на жидкой питательной среде используется для дифференциации бактерий.

Питательные среды Для культивирования бактерий в лабораторных условиях применяются искусственные питательные среды различного состава. Обычные или простые питательные среды (мясо-пептонный агар, мясопептонный бульон) используются для начальных посевов (первичных). К сложным относятся элективные и дифференциально - диагностические питательные среды.

Питательные среды Элективные среды обеспечивают рост только определенного вида микроорганизмов, при этом сопутствующая микрофлора подавляется специальными добавками. Дифференциально-диагностические питательные среды используют для изучения биохимических свойств микроорганизмов и дают возможность дифференцировать бактерии по ферментативной активности.

КЛАССИФИКАЦИЯ МИКРООРГАНИЗМОВ По мере изучения и выделения новых видов бактерий, каждая вновь создаваемая классификаций отражала уровень развития науки. Классификация микроорганизмов, то есть систематизация всех известных видов, основывалась на ряде признаков:

Последовательность определения микроорганизма I. К какому царству принадлежит – прокариот или эукариот II. К какой из основных категорий относится: 1. Грамотрицательные эубактерии, имеющие клеточные стенки. 2. Грамположительные эубактерии, имеющие клеточные стенки. 3. Эубактерии, лишенные клеточных стенок. 4. Архебактерии.

Всего известно 35 групп микроорганизмов III. К какой группе внутри 4 -х категорий принадлежит микроорганизм: 1. Спирохеты 2. Аэробные /микроаэрофильные, подвижные, спиралевидные/, виброидные, грамотрицательные бактерии. 3. Неподвижные грамотрицательные, изогнутые бактерии. 4. Грамотрицательные, анаэробные, микроаэрофильные палочки и кокки.

I. грамотрицательные эубактерии, имеющие клеточную стенку 5. Факультативные анаэробные, грамотрицательные палочки. 6. Грамотрицательные, анаэробные, прямые, изогнутые и спиралевидные палочки. 7. Бактерии, осуществляющие диссимиляционное восстановление сульфата или серы. 8. Анаэробные грамотрицательные кокки. 9. Риккетсии и хламидии.

I. грамотрицательные эубактерии, имеющие клеточную стенку 10. Аноксигенные фототрофные бактерии. 11. Оксигенные фототрофные бактерии. 12. Аэробные хемолитотрофные бактерии. 13. Почкующиеся и/или образующие выросты бактерии. 14. Бактерии, имеющие чехлы. 15. Нефотосинтезирующие скользящие бактерии, не образующие плодовых тел. 16. Скользящие бактерии, образующие плодовые тела.

II. Грамположительные эубактерии, имеющие клеточные стенки. 1. Грамположительные кокки. 2. Образующие эндоспоры грамположительные палочки и кокки. 3. Не образующие спор грамположительные палочки правильной формы. 4. Не образующие спор грамположительные палочки неправильной формы. 5. Микобактерии. 6. Актиномицеты.

IV. Архебактерии. 1. Метаногены. 2. Сульфатредуцирующие археи. 3. Экстремально галофильные архебактерии. 4. Архебактерии, лишенные клеточной стенки. 5. Экстремальные термофилы и гипертермофилы, метаболирующие S

Последовательность определения микроорганизма IV. К какому роду относится микроорганизм. V. К какому семейству относится микроорганизм. VI. К какому виду относится микроорганизм.

Построение таксономического названия микроорганизма. 1. ЦАРСТВО 2. КАТЕГОРИЯ. 3. ГРУППА. 4. РОД. 5. СЕМЕЙСТВО. 6. ВИД

Достоинства современной классификации микроорганизмов Созданная на сегодняшний день филогенетическая систематизация имеет все достоинства и недостатки классификации, построенной на одном признаке. К достоинствам следует отнести почти полную идентичность результатов, получаемых в различных лабораториях мира. Для установления видовой принадлежности еще и дополнительно стали оценивать степень гомологии ДНК-ДНК, используя типовые штаммы.

Недостатки имеющейся классификации микроорганизмов. Недостаток имеющейся классификации в том, что она не дает представление о функциях бактерий. Поэтому сейчас большое значение для практических микробиологов имеет создание фенотипической или функциональной классификации. Для быстрого определения таксономического положения микроорганизмов используют «Определитель Берджи» . Это справочное издание постоянно пополняется новыми группами изолятов и периодически переиздается. Сейчас актуально 11 издание.

Формирование современной классификации микроорганизмов. На современном этапе идентификация филогенетического положения прокариот, в том числе некультивируемых, развивается на основе нуклеотидных последовательностей 16 S-р РНК. Усовершенствованная методика секвенирования и обработки данных сделала этот подход практически безальтернативным при определении родовой принадлежности новых организмов. Описание новых таксонов бактерий в последние 50 лет проходит очень быстрыми темпами, благодаря успехам в изучении анаэробов.

Отличие классификации от идентификации Кроме классификаций, в микробиологии существуют схемы идентификации выделенных культур бактерий. Для построения схемы идентификации выбирают такие признаки микроорганизмов, которые легко определить, а для классификации, часто требуют применения сложные методы. При этом схема идентификации должна включать малое число признаков, а для таксономического определения в классификации используют как можно большее число признаков.

СПАСИБО ЗА ВНИМАНИЕ. ВЫ ПРОСЛУШАЛИ ЛЕКЦИЮ № 3 ПО МИКРОБИОЛОГИИ НА ТЕМУ: «РОСТ И РАЗМНОЖЕНИЕ МИКРООРГАНИЗМОВ. ЭВОЛЮЦИЯ И КЛАССИФИКАЦИЯ МИКРООРГАНИЗМОВ» .

Одним из проявлений жизнедеятельности микроорганизмов является их рост и размножение.

Рост - это увеличение размеров отдельной особи.

Размножение - способность организма к воспроизведению.

Основным способом размножения у бактерий является поперечное деление, которое происходит в различных плоскостях с формированием многообразных сочетаний, клеток (гроздья, цепочки, тюки и т. д.). У бактериальных клеток делению предшествует удвоение материнской ДНК. Каждая дочерняя клетка получает копию материнской ДНК. Процесс деления считается законченным, когда цитоплазма дочерних клеток разделена перегородкой. Клетки с перегородкой деления расходятся в результате действия ферментов, которые разрушают сердцевину перегородки.

Скорость размножения бактерий различна и зависит от вида микроба, возраста культуры, питательной среды, температуры.

При выращивании бактерий в жидкой питательной среде наблюдается несколько фаз роста культур:

1. Фаза исходная (латентная) - микробы адаптируются к питательной среде, увеличивается размер клеток. К концу этой фазы начинается размножение бактерий.

2. Фаза логарифмического инкубационного роста - идет интенсивное деление клеток. Длится эта фаза около 5 часов. При оптимальных условиях бактериальная клетка может делиться каждые 15-30 мин.

3. Стационарная фаза - число вновь появившихся бактерий равно числу отмерших. Продолжительность этой фазы выражается в часах и колеблется в зависимости от вида микроорганизмов.

4. Фаза отмирания - характеризуется гибелью клеток в условиях истощения питательной среды и накопления в ней продуктов метаболизма микроорганизмов.

5ч 10 15 20 25 30 35 40 45 Время нед нед

Если питательная среда, в которой культивируются микроорганизмы, будет обновляться, то можно поддерживать фазу логарифмического роста.

При размножении на плотных питательных средах бактерии образуют на поверхности среды и внутри нее типичные для каждого микробного вида колонии. Колонии могут быть выпуклыми или плоскими, с ровными или неровными краями, с шероховатой или гладкой поверхностью и иметь различную окраску: от белой до черной. Все эти особенности (культуральные свойства) учитывают при идентификации бактерий, а также при отборе колоний для получения чистых культур. Чтобы знать, как получить чистую культуру того или иного микроорганизма, надо внимательно ознакомиться с практической частью данной главы.

2. Реакция преципитации. Определение, компоненты. Механизм, варианты постановки, применение

Реакция преципитации (1897 г. Клаус) – это осаждение специфического мелкодисперстного АГ эквивалентным кол-ом АТ в растворе электролита

Компоненты: коллоидный раствор АГ; сыворотка с высоким титром АТ

Механизм: АТ+АГ=АТ-АГ: АТ-АГ=преципитат

Преимущества и недостатки: + большая устойчивость к высоким температурам

Значение: сероидентификация (АТ в сыворотке, АГ неизвестный); серодиагностика (неизвестные АТ в сыворотке, изветнйы АГ); определение следовых кол-в АГ; изучение антигенных структур бактерии; определение видовой принадлежности биол. жидкостей; выявление фальсификации мясных пищевых продуктов

Виды: реакция кольцепрецепитации (последовательные разведения антигена наслаивают на стандартное разведение диагностической сыворотки в пробирках, при этом осадок образуется в виде кольца на границе двух сред); реакция преципитации в пробирках (помутнение, выпадение осадка); реакция диффузной преципитации в геле (видимая линия)

Микоплазмы

Микоплазмы - это микроорганизмы, лишенные клеточной стенки, но окруженные трехслойной липопротеидной ци-топлазматической мембраной. Микоплазмы обнаружены в почве, сточных водах, на различных субстратах, в организме животных и человека. Имеются патогенные и непатогенные виды.

К патогенным для человека относится Mycoplasma pneumonia, к полупатогенным - m. hominy"s и Т- группа.

Клетки микоплазм весьма полиморфны (шаровидные, кольцевидные, коккобациллярные, нитевидные, ветвистые, в виде элементарных телец). Патогенные микоплазмы поражают органы дыхания, мочеполовую и ЦНС. В настоящее время этим возбудителям уделяется особое внимание как возбудителям заболевания воспалительного характера.

Билет 27

Диссоциация бактерий

2. Реакция агглютинации: определение, компоненты, механизм, варианты постановки, применение

Реакция агглютинации – это специф. АГ+АТ, проявляющееся в склеивании и выпадении в осадок корпускулярных антигенов: бактерий, эритроцитов, а также частиц с адсорбированными на них антигенами под влиянием антител в среде с электролитом.

Компоненты: культура возбудителя с АГ-агглютиноген, сыворотка с АТ-агглютинин

Механизм: теория «решетки»: 1 - специфическая адсорбция антител на поверхности клетки или частицы, несущей соответствующие антигены; 2 - образование агрегата (агглютината) и выпадение его в осадок.

Методики: на стекле (ориентировочная); в пробирке (позволяет определить кол-во и наличие АГ-агглютиногенов).

Преимущества и недостатки: - недостаточная специфичность (повысить можно разведением исследуемой сыворотки до ее титра или половины титра); - недостаточная чувствительность; - трудоемкость; - длительность; + наглядность.

Титр сыворотки – ее максимальное разведение, в котором обнаруживается агглютинация антигена.

Диагностический титр – это критическая величина титра АТ сыворотки крови больного к конкретному возбудителю, достижение или превышение которой расценивается как диагностический признак заболевания. Устанавливается эмпирическим путем для каждого заболевания. (р. Видаля)

Значение: дифференцировка ранее перенесенной инфекции, вакцинации или текущее заболевание (+),

оценка динамики нарастания титра антител, которое наблюдается только при текущей инфекции.

Реакция адсорбции агглютининов по Кастеллани. Взяли АТ после иммунизации АГ животных, отделили форменные элементы и фибриноген. Получили монорецепторную сыворотку.

Вирусы полиомиелита

Фильтрующийся агент, названный впоследствии вирусом полиомиелита (синоним полиовирус), был выделен в 1909 г. при заражении обезьян К. Ландштейнером и Е. Поппером из спинного мозга умершего от полиомиелита ребенка.

Структура и химический состав. Однонитевая РНК ассоции­рована с внутренним белком, при удалении которого ее инфек-ционность сохраняется. Капсид вириона построен по икосаэдрическому типу симметрии и состоит из 60 субъединиц (рис. 21.1).

Культивирование и репродукция. Вирусы полиомиелита хоро­шо репродуцируются с выраженным ЦПД в первичных и пере­виваемых культурах разного происхождения (фибробласты человека, клетки HeLa и др.).

Адсорбция полиовирусов происходит преимущественно на липопротеиновых рецепторах клетки, в которую они проникают путем виропексиса, - вирус захватывается клеточной мембраной, которая впячивается внутрь, образуя микровакуоль. После освобождения вириона от капсида образуется реплика-тивная форма РНК, которая является матрицей для синтеза цРНК и фонда вирионных РНК. Репродукция полиовируса происходит в цитоплазме чувствительных клеток.

Вначале синтезируется единый гигантский полипептид, кото­рый разрезается протеолитическими ферментами на несколько фрагментов. Одни из них представляют собой капсомеры, из которых строится капсид, другие - внутренние белки, третьи - вирионные ферменты (РНК-транскриптаза и протеаза). Затем происходит формирование нескольких сотен вирионов в каждой инфицированной клетке, которые освобождаются после ее ли­зиса.

Антигены. Вирусы полиомиелита разделены на три сероло­гических типа (I, II и III), которые различаются между собой по антигенной структуре и некоторым другим биологическим признакам. Все три серотипа имеют общий комплементсвязыва-ющий антиген. Их дифференциация производится в реакции нейтрализации.

Патогенез заболеваний человека. Входными воротами инфек­ции является слизистая оболочка рта и носоглотки. Первичная репродукция вируса происходит в эпителиальных клетках слизистой оболочки рта, глотки и кишечника, в лимфатических узлах глоточного кольца и тонкой кишки (пейеровых бляшках).

Из лимфатической системы вирус попадает в кровь. Стадия вирусемии продолжается от нескольких часов до нескольких дней. В некоторых случаях вирус проникает в нейроны спинного и головного мозга, по-видимому, через аксоны периферических нервов. Это может быть связано с повышенной проницаемостью гематоэнцефалического барьера за счет образующихся иммунных комплексов.

Репродукция вируса в двигательных нейронах передних рогов спинного мозга, а также в нейронах большого и продол­говатого мозга приводит к глубоким, нередко необратимым изменениям. В цитоплазме пораженных нейронов, которые под­вергаются глубоким дегенеративным изменениям, обнаружива­ются кристаллоподобные скопления вирионов.

Иммунитет. После перенесения заболевания формируется пожизненный гуморальный иммунитет к соответствующему серотипу вируса. Протективными свойствами обладают вирус-нейтрализующие антитела, которые начинают синтезироваться еще до появления параличей. Однако их максимальные титры (1:2048 и более) регистрируются через 1-2 мес и обнаружи­ваются в течение многих лет. Это имеет практическое значение для ретроспективной диагностики полиомиелита. Пассивный им­мунитет, приобретенный после рождения, сохраняется в течение первых 4-5 нед жизни ребенка. Высокая концентрация антител в сыворотке не предотвращает развитие параличей после того, как полиовирус проник в ЦНС.

Экология и распространение. Устойчивость полиовируса во внешней среде сравнительно велика. Он сохраняет свои инфек­ционные свойства в сточных водах при О °С в течение месяца. Нагревание при температуре 50 °С инактивирует вирус в течение 30 мин в воде, а при 55 °С в молоке, сметане, масле и мороже­ном. Вирус устойчив к детергентам, но высокочувствителен к УФ-лучам и высушиванию, а также к хлорсодержащим дезинфектантам (хлорная известь, хлорамин). Наиболее чувствитель­ны к полиомиелиту дети, однако заболевают и взрослые. Нередко распространение полиомиелита приобретает эпидемический ха­рактер. Источником инфекции являются больные и вирусоносители. Выделение вируса из глотки и с фекалиями начинается в инкубационный период. После появления первых симптомов заболевания вирус продолжает выделяться с фекалиями, в 1 г которых содержится до 1 млн. инфекционных доз. Поэтому главное значение имеет фекально-оральный механизм передачи инфекции через загрязненные фекалиями воду и пищевые продукты. Определенная роль принадлежит мухам. В эпидеми­ческих очагах может происходить инфицирование людей воздуш­но-капельным путем.

Специфическая профилактика. Инактивированная вакцина, полученная Дж. Солком в США путем обработки вируса раствором формалина, обеспечивает достаточно напряженный типоспецифический гуморальный иммунный ответ. К недостаткам инактивированной вакцины следует отнести необходимость ее трехкратного введения парентеральным путем. Кроме того, она не обеспечивает надежного местного иммунитета кишечника.

А. Себиным в США были получены аттенуированные вариан­ты вирусов полиомиелита, из которых в конце 50-х годов совет­скими вирусологами А. А. Смородинцевым и М. П. Чумаковым была приготовлена живая полиовирусная вакцина. Вакцинные штаммы оказались генетически стабильны. Они не реверсировали к «дикому типу» при пассажах через кишечник людей и не репродуцировались в клетках ЦНС.

Основное отличие вакцинных от исходных, «диких», штаммов состоит в их безвредности для человека.

Живая вакцина имеет ряд преимуществ по сравнению с ин­активированной. Она обеспечивает не только общий гуморальный иммунитет, но и местный иммунитет кишечника за счет синтеза секреторных иммуноглобулинов класса А. Вместе с тем в ре­зультате интерференции вирусов с «дикими» типами полиовируса в эпителиальных клетках слизистой оболочки тонкого кишечника происходит элиминация- последних из организма. И, наконец, живая вакцина вводится естественным путем - через рот, что в значительной мере облегчает ее применение. Недостатком живых вакцин является необходимость постоянного контроля за генетической стабильностью вакцинного штамма.

Для пассивной профилактики полиомиелита применяют чело­веческий иммуноглобулин.

Жизнедеятельность бактерий характеризуется ростом - фор­мированием структурно-функциональных компонентов клетки и увеличением самой бактериальной клетки, а также размноже­нием - самовоспроизведением, приводящим к увеличению ко­личества бактериальных клеток в популяции.

Бактерии размножаются путем бинарного деления пополам, реже путем почкования. Актиномицеты, как и грибы, могут раз­множаться спорами. Актиномицеты, являясь ветвящимися бактериями, размножаются путем фрагментации нитевидных клеток. Грамположительные бактерии делятся путем врастания синтези­рующихся перегородок деления внутрь клетки, а грамотрицательные - путем перетяжки, в результате образования гантелевид-ных фигур, из которых образуются две одинаковые клетки.

Делению клеток предшествует репликация бактериальной хро­мосомы по полуконсервативному типу (двуспиральная цепь ДНК раскрывается и каждая нить достраивается комплементарной ни­тью), приводящая к удвоению молекул ДНК бактериального ядра - нуклеоида.

Репликация ДНК происходит в три этапа: инициация, элон­гация, или рост цепи, и терминация.

Размножение бактерий в жидкой питательной среде. Бактерии, засеянные в определенный, не изменяющийся объем питатель­ной среды, размножаясь, потребляют питательные элементы, что приводит в дальнейшем к истощению питательной среды и пре­кращению роста бактерий. Культивирование бактерий в такой си­стеме называют периодическим культивированием, а культуру - периодической. Если же условия культивирования поддерживаются путем непрерывной подачи свежей питательной среды и оттока такого же объема культуральной жидкости, то такое культивиро­вание называется непрерывным, а культура - непрерывной.

При выращивании бактерий на жидкой питательной среде наблюдается придонный, диффузный или поверхностный (в виде пленки) рост культуры. Рост периодической культуры бактерий, выращиваемых на жидкой питательной среде, подразделяют на несколько фаз, или периодов :

1. лаг-фаза;

2. фаза логарифмического роста;

3. фаза стационарного роста, или максимальной концентрации

бактерий;

4. фаза гибели бактерий.

Эти фазы можно изобразить графически в виде отрезков кри­вой размножения бактерий, отражающей зависимость логариф­ма числа живых клеток от времени их культивирования.

Лаг-фаза - период между по­севом бактерий и началом размножения. Продолжительность лаг-фазы в среднем 4-5 ч. Бактерии при этом увеличиваются в раз­мерах и готовятся к делению; нарастает количество нуклеино­вых кислот, белка и других компонентов.

Фаза логарифмического (экспоненциального) роста является периодом ин­тенсивного деления бактерий. Продолжительность ее около 5- 6 ч. При оптимальных условиях роста бактерии могут делиться каждые 20-40 мин. Во время этой фазы бактерии наиболее ра­нимы, что объясняется высокой чувствительностью компонен­тов метаболизма интенсивно растущей клетки к ингибиторам синтеза белка, нуклеиновых кислот и др.


Затем наступает фаза стационарного роста , при которой количество жиз­неспособных клеток остается без изменений, составляя макси­мальный уровень (М-концентрация). Ее продолжительность вы­ражается в часах и колеблется в зависимости от вида бактерий, их особенностей и культивирования.

Завершает процесс роста бактерий фаза гибели , характеризующаяся отмиранием бак­терий в условиях истощения источников питательной среды и накопления в ней продуктов метаболизма бактерий. Продолжи­тельность ее колеблется от 10 ч до нескольких недель. Интен­сивность роста и размножения бактерий зависит от многих фак­торов, в том числе оптимального состава питательной среды, окислительно-восстановительного потенциала, рН, температуры и др.

Размножение бактерий на плотной питательной среде. Бактерии, растущие на плотных питательных средах, образуют изолирован­ные колонии округлой формы с ровными или неровными кра­ями (S- и R-формы), различной консистенции и цве­та, зависящего от пигмента бактерий.

Пигменты, растворимые в воде, диффундируют в питатель­ную среду и окрашивают её. Дру­гая группа пигментов нерастворима в воде, но растворима в орга­нических растворителях. И, нако­нец, существуют пигменты, не растворимые ни в воде, ни в органических соединениях.

Наиболее распространены среди микроорганизмов такие пиг­менты, как каротины, ксантофиллы и меланины. Меланины яв­ляются нерастворимыми пигментами черного, коричневого или красного цвета, синтезирующимися из фенольных соединений. Меланины наряду с каталазой, супероксидцисмутазой и пероксидазами защищают микроорганизмы от воздействия токсичных перекисных радикалов кислорода. Многие пигменты обладают ан­тимикробным, антибиотикоподобным действием.

Выращивание бактерий – занятие увлекательное и полезное. Некоторым экспериментаторам такие опыты дают возможность убедиться в наличии жизни буквально на каждом миллиметре нестерилизованной поверхности, другие, более практичные естествоиспытатели преследуют исключительно утилитарные цели (использование бактерий в приготовлении продуктов питания, в изготовлении удобрений и даже в строительстве имеет определенную популярность). Чтобы понимать, как наладить процесс культивирования микроорганизмов в специально созданных условиях, следует иметь представление о фазах роста бактерий и о тех факторах, которые влияют на жизнь бактериальной популяции, растущей на питательных средах, контролируемых человеком.

Перед заселением (инокуляцией) бактерий на поверхности с содержанием питательных веществ заводчик должен иметь достаточно информации о том, чем смогут дышать будущие бактериальные клетки и чем они могут питаться.

Дыхание

Практически все бактерии, которых можно вырастить в домашних условиях, являются либо аэробами (дышат исключительно кислородом), либо факультативными анаэробами (в зависимости от условий обитания могут менять химизм дыхательных процессов). Культуры облигатных (строгих) бактерий-анаэробов, которые гибнут в присутствии кислорода, можно выращивать только в бескислородной среде.

Питание

Состав любой среды, в которой необходимо добиться размножения бактериальной популяции, должен включать в себя вещества, содержащие углерод и азот. Существенные требования к необходимому питанию выдвигает автотрофность или гетеротрофность будущей популяции. Питающиеся неорганикой автотрофы требуют достаточного присутствия углекислого газа и карбоната (гидрокарбоната) кальция. Гетеротрофы, разлагающие органику, добывают себе еду из органических кислот, спиртов, углеводов и ароматических соединений. Потребность в азоте бактериальной популяции гетеротрофов удовлетворяется за счет органических соединений с аминогруппами – азотсодержащими органическими веществами.

Сама инокуляция бактерий на питательных средах производится либо капельным путем (вместе с жидкой субстанцией), либо механическим перемещением живой культуры с поверхности обитания на поверхность с подготовленным питанием. Можно провести ватной палочкой по поверхности стола и стряхнуть сухие частицы пыли на питательный раствор.

Рост, размножение и смерть

Фазы роста бактериальной популяции имеют выверенную микробиологами закономерность. На графике роста можно выделить четыре основных фазы, которые наглядно демонстрируют основные этапы развития бактерий на питательных средах.

Первый этап

Первая фаза роста популяции носит название лаг-фазы. Она начинается с момента заселения культуры бактерий на питательный раствор и заканчивается моментом адаптации переселенной популяции к новым условиям. В течение лаг-фазы клетки приспосабливаются к новым условиям жизни. В этой фазе отмечается задержка роста культуры и отсутствие размножения (деления) бактерий.

Продолжительность лаг-фазы зависит от возраста культуры (чем она старше, тем дольше идет приспособление) и от того, насколько различны в среде изначальной и в среде, где популяция культивируется, источники питательных веществ для бактериальной клетки. Чем больше эта разница, тем процесс адаптации дольше.

Второй этап

Следующая фаза роста живой культуры – развитие по экспоненте или экспоненциальная фаза. Приспособившись к условиям дыхания и питания в новой среде, клетки начинают активно делиться. В этой фазе у них самая высокая химическая активность, и они отличаются самой высокой жизнеспособностью. Во время фазы экспонентного роста клетки синтезируют наибольшее количество РНК – белка, который отвечает за создание новой ДНК по той информации, которая зашифрована в материнской ДНК.

Третий этап

С достижением максимального количества жизнеспособных клеток, которые способен «прокормить» имеющийся питательный раствор, фиксируется следующий этап роста живой культуры – стагнация, или стационарная фаза. Отсутствие достаточного питания замедляет все химизмы, которые происходят внутри клетки, скорость размножения падает, РНК практически не синтезируется.

В эту фазу роста популяции микробиологи наблюдают такое явление в бактериальном сообществе, как апоптоз. Апоптоз – альтруистическое поведение части бактерий, которые прекращают поддерживать в себе жизненно важные реакции (фактически, совершают суицид) тем самым отправляясь на корм выжившей части бактериальной популяции. Апоптоз дает возможность для размножения популяции в фазу стагнации.

Последний этап

Завершение жизненного цикла бактериальной клетки зависит скорее от внутренних факторов. Находясь в условиях ограниченного питания, клетки после фаз активного периода роста, размножения и стагнации накапливают в месте своего обитания продукты собственной жизнедеятельности: органические кислоты, автолиз, антибиотики, выработанные в результате бактериального метаболизма клетки.

Домашние условия

В домашних условиях колонии бактерий проще всего вырастить либо на жидкой среде (для этого подойдет бульон), либо на растительном желатине – агаре. Из двух возможных способов культивирования популяций (стационарный и непрерывный) дома можно наладить только стационарный (например, в чашках Петри).

Непрерывный предполагает постоянную подачу питательного раствора и откачку живой культуры. Этот процесс можно поддерживать только при наличии специального лабораторного оборудования, с помощью которого отслеживается необходимое количество требуемого субстрата и уровень заборов живой культуры из имеющегося бактериального инкубатора.

Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия. Табу: юриспруденция, политика, IT-технологии и компьютерные игры.

Рост и размножение бактерий. Механизм и скорость размножения. Фазы размножения микробов.

Наименование параметра Значение
Тема статьи: Рост и размножение бактерий. Механизм и скорость размножения. Фазы размножения микробов.
Рубрика (тематическая категория) Культура

1. Понятия роста и размножения бактерий

2.Бактериальная популяция

3.Колонии

1 . Для микробиологической диагностики, изучения микроорганизмов и в биотехнологических целях микроорганизмы культивируют на искусственных питательных средах .

Под ростом бактерий понимают увеличение массы клеток без изменения их числа в популяции как результат скоординирован­ного воспроизведения всœех клеточных компонентов и структур.
Размещено на реф.рф
Увеличение числа клеток в популяции микроорганизмов обозна­чают термином "размножение". Оно характеризуется временем генерации (интервал времени, за который число клеток удваи­вается) и таким понятием, как концентрация бактерий (число клеток в 1 мл).

В отличие от митотического цикла делœения у эукариотов раз­множение большинства прокариотов (бактерий) идет путем бинарного делœения, а актиномицетов - почкованием. При этом всœе прокариоты существуют в гаплоидном состоянии, поскольку молекула ДНК представлена в клетке в единствен­ном числе.

2. При изучении процесса размножения бактерий крайне важно учитывать, что бактерии всœегда существуют в виде более или менее многочисленных популяций, и развитие бактериальной по­пуляции в жидкой питательной среде в периодической культуре можно рассматривать как замкнутую систему.

В этом процессе выделяют 4 фазы :

‣‣‣ 1-я - начальная, или лаг-фаза, или фаза задержки размноже­ния, - характеризуется началом интенсивного роста клеток, но скорость их делœения остается невысокой;

‣‣‣ 2-я - логарифмическая, или лог-фаза, или экспоненциальная фа­за, - характеризуется постоянной максимальной скоростью делœе­ния клеток и значительным увеличением числа клеток в популяции;

‣‣‣ 3-я - стационарная фаза - наступает тогда, когда число клеток в популяции перестает увеличиваться. Это связано с тем, что наступает равновесие между числом вновь образующихся и гибнущих клеток. Число живых бактериальных клеток в попу­ляции на единицу объёма питательной среды в стационарной фазе обозначается как М-концентрация. Этот показатель явля­ется характерным признаком для каждого вида бактерий;

‣‣‣ 4-я - фаза отмирания (логарифмической гибели) - характери­зуется преобладанием в популяции числа погибших клеток и про­грессивным снижением числа жизнеспособных клеток популяции. Прекращение роста численности (размножения) популяции микроорганизмов наступает в связи с истощением питательной среды и/или накоплением в ней продуктов метаболизма мик­робных клеток. По этой причине, удаляя продукты метаболизма и/или заменяя питательную среду, регулируя переход микробной по­пуляции из стационарной фазы в фазу отмирания, можно соз­дать открытую биологическую систему, стремящуюся к устра­нению динамического равновесия на определœенном уровне развития популяции.

Такой процесс выращивания микроорганизмов принято называть проточным культивированием (непрерывная культура). Рост в непрерывной культуре позволяет получать большие массы бактерий при проточном культивировании в специаль­ных устройствах (хемостатах и турбидистатах) и используется при производстве вакцин, а также в биотехнологии для полу­чения различных биологически активных веществ, продуци­руемых микроорганизмами.

Для изучения метаболических процессов на протяжении цикла клеточного делœения возможно также использование синхронных культур - таких культур бактерий, всœе члены популяции кото­рых находятся в одной фазе цикла. Это достигается с помощью специальных методов культивирования.

При этом через несколько одновременных делœений синхронизи­рованная клеточная суспензия постепенно снова переходит к асинхронному делœению, так что число клеток увеличивается в дальнейшем уже не ступенчато, а непрерывно.

3. При культивировании на плотных питательных средах бакте­рии образуют колонии - видимое невооруженным глазом скопле­ние бактерий одного вида, являющееся чаще всœего потомством одной клетки.

Колонии бактерий разных видов отличаются :

‣‣‣ формой;

‣‣‣ величиной;

‣‣‣ прозрачностью;

‣‣‣ цветом;

‣‣‣ высотой;

‣‣‣ характером поверхности и краев;

‣‣‣ консистенцией.

Характер колоний - один из таксономических признаков бактерий.

44. Определœение и сущность понятий "биосфера" и "биоценоз". Современные представления об эволюции микробов.

В природе микроорганизмы заселяют практически любую среду (почва, вода, воздух) и распространены гораздо шире, чем другие живые существа. Благодаря разнообразию механизмов утилизации ис­точников питания и энергии, а также выраженной адаптации к внеш­ним воздействиям, микроорганизмы могут обитать там, где другие формы жизни не выживают.

Естественные среды обитания боль­шей части организмов - вода, почва и воздух. Число микроорга­низмов, обитающих на растениях и в организмах животных, зна­чительно меньше. Широкое распространение микроорганизмов свя­зано с лёгкостью их распространения по воздуху и воде; в частности, поверхность и дно пресноводных и солёных водоёмов, а также не­сколько сантиметров верхнего слоя почвы изобилуют микроорганиз­мами, разрушающими органические вещества. Меньшее количество микроорганизмов колонизирует поверхность и некоторые внутрен­ние полости животных (к примеру, ЖКТ,. верхние отделы дыхатель­ных путей) и растений.

В зонах обитания микроорганизмы образуют биоценозы [от греч. bios, жизнь, + koinos, сообщество] - слож­ные ассоциации со специфическими и часто необычными взаимоот­ношениями. Каждое микробное \\сообщество в конкретном биоценозе образуют специфичныеаутохтонные микроорганизмы [от греч. autos, свой, + chthon, страна, местность], то есть микробы, прису­щие конкретной области.

Симбиоз [от греч. symbiosis , совместное проживание] - совместное долгое существова­ние микроорганизмов в долгоживущих сообществах. Взаимоотношения, при которых микроор­ганизм располагается вне клеток хозяина (более крупного организма), известны как эктосимбиоз: при локализации внутри клеток - как эндосимбиоз. Типичные эктосимбиотические микробы - Escherichia coli, бактерии родов Bacteroides и Bifidobacterium, Proteus vulgaris, а также другие представители кишечной микрофлоры. Как пример эндосимбиоза можно рассмат­ривать плазмиды, обеспечивающие, к примеру, резистентность бактерий к ЛС. Симбиотические отношения также разделяют по выгоде, получаемой каждым из партнёров.

Мутуализм [от лат. mutuus, взаимный] - взаимовыгодные симбиотические отношения. Так, микроорганизмы вырабатывают БАВ, необходимые организму хозяина (к примеру, витамины группы В). При этом обитающие в макроорганизмах эндо- и эктосимбионты защищены от неблагоприятных условий среды (высыхания и экстремальных температур) и имеют постоян­ный доступ к питательным веществам. Из всœех видов мутуализма наиболее удивительно куль­тивирование некоторых грибов насекомыми (жуками и термитами). С одной стороны, это способствует более широкому распространению грибов, с другой - о \

mjбеспечивает постоян­ный источник питательных веществ для личинок. Это напоминает выращивание человеком полезных растений и микроорганизмов.

Комменсализм - разновидность симбиоза, при которой выгоду извлекает только один парт­нер (не принося ʼʼвидимогоʼʼ вреда другому); микроорганизмы, участвующие в таких взаимо­отношениях, - комменсалы [от лат. сот-, с, + mensa, стол; буквально - сотрапезники]. Микроорганизмы-комменсалы колонизируют кожные покровы и полости организма человека (к примеру, ЖКТ), не причиняя ʼʼвидимогоʼʼ вреда; их совокупность - нормальная мик­робная флора (естественная микрофлора). Типичные эктосимбиотические организмы-комменсалы - кишечная палочка, бифидобактерии, стафилококки, лактобациллы. Многие бактерии-комменсалы принадлежат к условно-патогенной микрофлоре и способны при опреде­лённых обстоятельствах вызывать заболевания макроорганизма (к примеру, при внесении их I кровоток во время медицинских манипуляций).

Рост и размножение бактерий. Механизм и скорость размножения. Фазы размножения микробов. - понятие и виды. Классификация и особенности категории "Рост и размножение бактерий. Механизм и скорость размножения. Фазы размножения микробов." 2017, 2018.

Рецепты